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Abstract

Acoustic pulsations can have a significant effect on gas turbine flow meters during volume flow measurements. These

systematic errors are investigated experimentally for high-frequency pulsations and are compared to the results of a quasi-

steady theory. Although significant deviations were found from the quasi-steady theory, the quadratic dependence of the

velocity amplitude appears to remain valid for all measurements. The exact quadratic dependence is a function of Strouhal

number of the pulsations. In the range of Strouhal numbers below 2.5, based on the chord length at the tip of the rotor

blade and the flow velocity at the rotor inlet plane, we find a slow decrease in the error with increasing Strouhal number,

Sr. The shape of the leading edge of the rotor blades does not affect this behaviour.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Gas turbine flow meters can reach high accuracy, generally of the order of 0.2%. This accuracy can only be
attained for optimal flow conditions. Acoustic perturbations resulting into flow pulsations can induce
significant systematic errors. A theoretical prediction of the error would allow a correction in the volume flow
measurement. The errors we consider in this paper are due to nonlinearities.

In recent years research has been carried out to determine the pulsation error during the measurement and
correct for this error. Atkinson [1] developed a software tool to solve the equation of motion of the rotor and
used the magnetic pickup registering the passing of a rotor blade to calculate the actual volume flow. This
method can only be used if the pulsations can still be detected in the turbine signal. As the pulsations in the
turbine meter signal decreases rapidly with increasing frequency, it is difficult to predict the real flow for high-
frequency pulsations. Another tool was developed by Cheesewright et al. [2], called the ‘Watchdog System’.
This system also uses the equation of motion of the rotor. Watchdog is designed for pulsation frequencies less
than 2Hz. We actually focus on the behaviour of the rotor at high frequencies for which the rotor inertia has
integrated fluctuations out. The rotor speed is therefore constant.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Assuming quasi-steady, incompressible flow and neglecting friction forces a relationship can be found
between the velocity pulsations and the measurement error [3]. Experiments have been carried out in the past
by Lee et al. [4], Jungowski and Weiss [5], Cheesewright et al. [2] and McKee [6]. These experiments indicated
that this basic theory can be used for low-frequency pulsations. To explore the limits of the validity of this
theory, a set-up was built at the Eindhoven University of Technology. In particular we address the question
whether pulsation errors still exist at high Strouhal numbers and how errors due to acoustical perturbations of
different frequencies interact.

In our experiments care was taken to determine accurately the amplitude of the velocity fluctuations at the
rotor. This was found to be a limitation in the earlier experiments reported in as literature. With the more
accurate determination of the acoustic field it is possible to detect small deviations from the basic theory. With
this set-up it was possible to measure the influence on the response of a flow meter (400 diameter) of the acoustic
perturbation with velocity amplitudes from 2% to 200% of the main flow velocity for frequencies from 24 up
to 730Hz. The range of Strouhal numbers was based on the blade length: 2� 10�2pSrLblade

p10 (see Eq. (24).

2. Theoretical modelling

2.1. A two-dimensional quasi-steady model for a rotor with infinitesimally thin blades in incompressible flow

If the rotor is modelled as a two-dimensional cascade of infinitesimally thin blades in an incompressible,
frictionless, steady flow, the integral mass and momentum equation applied to a fixed control surface CS with
an outer normal n reduces to

r0

ZZ
CS

v � ndS ¼ 0, (1)

r0

ZZ
CS

vðv � nÞdS ¼ Fbf , (2)

where r0 is the fluid density, v is the velocity vector and Fbf are the forces imposed on the fluid by the turbine
blades. The control volume, CS, is chosen as shown in Fig. 1. Because infinitesimally thin blades and
frictionless flow are assumed, the surface area of inflow is equal to the surface area of outflow. It follows from
Eq. (1) that the axial component of the incoming velocity, uin, is equal to the outgoing velocity, uout;x;
uin ¼ uout;x.

It is assumed that the flow enters the rotor without any angular momentum and that the flow leaves the
rotor with a velocity aligned with the blades (see Fig. 1). This is a realistic assumption if the chord length of the
blades, Lblade, is large compared to the distances between the blades, s, i.e. for cascades, the ratio, s=Lblade,
should be less than 0.7 [7].

By considering the flow in a reference frame attached to the rotor, this implies that

tan b ¼
orþ uout;y

uout;x
. (3)

We assume further that there is no swirl in the incoming flow so that uin;y ¼ 0 and that the inflow is uniform.
The momentum equation in the y-direction can be approximated by

r0Auinðuin tan bav � oRÞ ¼ Fbf ;y, (4)

where o is the angular rotation velocity of the rotor, A is the cross-sectional area of the rotor, bav is the
average blade angle and R is the root-mean-square radius of the inner and outer radii of the meter, rin and rout,

i.e., R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðr2in þ r2outÞ

q
. The force exerted on the fluid by the blade, Fbf ;y, is equal and opposite to the force

exerted by the fluid on the blade, F fb;y. The fluid induces a torque on the rotor, T fb ¼ F fb;yR, accelerating the
rotor. Using the equation of motion of the rotor, we get

I rotor
do
dt
¼ r0Auinðuin tan bav � oRÞR� Tf , (5)
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Fig. 2. Experimental set up: a high-pressure reservoir of dry air (A) is connected with a pipe (B) to a turbine meter (D). The flow is

controlled by an adjustable valve (C) creating choked flow with constant mass flow. Pulsations can be induced by a loudspeaker (E) or a

siren (F). The pulsations are measured with six pressure transducers ðp1; p2; p3; p4; p5 and p6) along in the test pipe (B) and two pressure

transducers (p7 and p8) placed within the turbine meter (D). Velocity pulsations can be measured with two hot wires (hw1 and hw2) placed

within the turbine meter (D). The rotation of the rotor of the turbine meter is measured by a probe detecting the passing of a rotor

blade (G).

Fig. 1. Two-dimensional representation of the flow entering and leaving the rotor modelled as a cascade.
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where I rotor is the moment of inertia of the rotor and Tf is torque on the rotor caused by the friction forces
(Fig. 2).

We assume periodic pulsations u0in around an average velocity ūin so that uin ¼ ūin þ u0in. We neglect the
friction torque, because T f=ðru2

inR3Þ51. We assume that the rotation of the rotor is constant in spite of the
pulsations. This implies that the response time of the rotor is much longer than the period, T, of the imposed
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acoustic pulsations, ðI rotor=Tr0u
2
inAÞb1. If the torque is averaged over one pulsation period, Eq. (5) reduces to

1

T

Z T

0

r0ðūin þ u0inÞA½ðūin þ u0inÞ tan bav � oR�Rdt ¼ r0AR½ðū2
in þ u02inÞ tan bav � ūinoR� ¼ 0, (6)

because u0in ¼ 0. The density fluctuations r0=r0 are of the order of u0in=c0, where c0 is the speed of sound. As
uin=c051 we have that r0=r05u0in=uin and we can neglect density fluctuations. Please note furthermore that
u0in=uin is not necessarily small. The effect of pulsations with high amplitudes is discussed by Cheesewright
et al. [8]. From this equation the angular rotation velocity, ō, caused by pulsating flow is obtained:

ō ¼
ūin tan bav

R
1þ

u02in
ū2
in

 !
. (7)

Using oid ¼ ðūin tan bav=RÞ for the ideal angular rotation velocity without pulsation, the error caused by
periodic pulsations becomes

ðEpulsÞid ¼
ō� oid

oid
¼

u02in
ū2
in

 !
. (8)

This means that sinusoidal pulsations, uin ¼ ūin þ ju
0
inj sinð2pt=TÞ, induce a systematic error of

ðEpulsÞid ¼
1

2

ju0inj

ūin

� �2

. (9)

2.2. Practical definition of pulsation error

In the previous section we defined a deviation ðEpulsÞid between angular velocity, ō, for steady rotation and
the ideal angular rotation velocity, oid, in absence of pulsations:

ðEpulsÞid ¼
ō� oid

oid
, (10)

where oid ¼ ūin tan bav=R. In experiments we use the steady angular velocity o0 reached in absence of
pulsations as reference instead of oid. Hence

Epuls ¼
ō� o0

o0
. (11)

In order to illustrate the difference between this ideal pulsation error, ðEpulsÞid, and the definition of the
pulsation error used in the experiments, Epuls, we consider the influence of a constant mechanical friction
torque, T̄mech on an ideal rotor. Using Eq. (6) we find in absence of pulsations

o0 ¼ oid �
T̄mech

r0AR2ūin

, (12)

while due to pulsations we would reach a steady rotation of angular velocity:

ō ¼
ūin tan b

R
1þ

u02in
ū2
in

 !
�

T̄mech

r0AR2ūin

. (13)

Hence, we would predict a pulsation error

ðEpulsÞexp ¼
oid

o0

� �
u02in
ū2
in

, (14)

corresponding to ðEpulsÞid ¼ u02in=ū2
in multiplied by a factor oid=o0.

Other reasons for a deviation between the ideal pulsation error, ðEpulsÞid, and the measured pulsation error,
Epuls defined by Eq. (11), is the unsteadiness of the flow at high Strouhal numbers. Our aim is to provide
quantitative information about this Strouhal number dependence.
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3. Experimental set-up

A dedicated set-up has been built at Eindhoven University of Technology to study the influence of
pulsations on gas turbine meters. A high-pressure reservoir with dry air at 60 bar (dew point �40 �C) is
connected to a test pipe of 0.10m diameter, and a length of 3.2m. At the open end of this pipe a turbine flow
meter (Instromet type SM-RI-X G250) is placed. The flow through the turbine flow meter is controlled by
means of a valve placed at the upstream end of the test pipe. By adjusting this valve, the critical pressure at the
valve is reached, resulting in a velocity, u�, at the valve equal to the local speed of sound, c�. Locally, we have a
Mach number of unity, M ¼ u�=c� ¼ 1 and the so-called ‘‘choked’’ flow. This provides a constant mass flow,
independent of perturbations in the flow downstream of the valve. The conditions of the reservoir, p0 and T0,
and the valve opening determine the mass flow.

Pulsations in the test pipe downstream of the choked valve can be induced by using a loudspeaker placed at
the downstream open end of the set-up or by means of a siren placed downstream of the valve. The
loudspeaker (SP-250P) is controlled using a signal generator (Yokogawa FG120) driving a power amplifier
(AIM WPA 301A). The siren is described by Peters [9]. The siren has a frequency range from a 10 up to
1000Hz. A bypass allows variations in the ratio, uac=u0, of acoustic velocity, uac, and the main flow velocity,
u0. The siren is a much more efficient sound source than the loudspeaker, by tuning it to the resonance
frequencies of the set-up, the ratio of acoustic to main flow velocities, uac=u0, can reach values up to 2. Between
the siren and the valve a volume is placed, a buffer pipe with length 1.22m and internal diameter 0:21m.
Except for the core of the pipe with a diameter of 0.05 m, this pipe is filled with porous material (Achiobouw
acoustic foam D80). To avoid chocking at the siren, the opening of the bypass of the siren was increased
before each series of experiments, while the siren was turned off, up to the point at which changes in volume
flow could no longer be observed. In this case the bypass opening has become larger than the opening of the
upstream valve and does not control the flow. The upstream valve is chocked and imposes a fixed mass flow
through the system. Only measurements using a significantly larger opening of the bypass than this critical
point are performed. Good agreement between the measurements using the loudspeaker and using the
loudspeaker confirm that there was no chocking at the siren.

The acoustic pressure in the set-up is measured by means of eight piezo-electric gauges placed flush at the
pipe wall. Six pressure transducers (three Kistler type 7031 and three PCB type 116A) are placed in the test
pipe upstream of the turbine meter each at randomly chosen distances (see Table 1). Two other pressure
transducers (PCB type 116A) are placed within the turbine meter, 0.010 and 0.040m upstream of the rotor of
the turbine meter (see Fig. 3). The signals from the pressure transducers are amplified using charge amplifiers
(Kistler type 5011). They are acquired by means of a PC using an 8 channel Sample and Hold module
(National Instrument SCXI 1180) and a DAC card (PCI MIO-16E-I) controlled by LabView software. The
pressure transducer and charge amplifier combinations are calibrated in a different set-up. In this calibration
set-up the transducer is placed next to a reference microphone flush in a closed end wall of a 1.0m long
Table 1

Position of the pressure transducer placed in the set-up

Pressure transducer in pipe Distance (m)

1 �1.566

2 �1.212

3 �0.960

4 �0.400

5 �0.265

6 �0.205

Pressure transducer in turbine meter Distance (m)

7 0.07775

8 0.1075

The distances are measured from the upstream end of the turbine meter, where the positive direction is the flow direction.
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Fig. 3. The placement of the pressure transducers in the turbine meter: (a) shows a schematic, simplified drawing of a cross-section of the

turbine flow meter and (b) shows a photograph of the turbine meter. One pressure transducer and two hot wires are placed at the same

distance upstream from the rotor (1 cm), equally distributed around the perimeter of the meter.
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pipe (diameter 0.07m). Plane waves are generated by a loudspeaker placed at the opposite end of the pipe.
All pressure transducers are calibrated against the reference pressure transducer for frequencies between 24
and 730Hz, i.e. the frequencies used in our experiments. The acoustic velocity of the pulsations can also be
measured using two hot wire anemometers (Dantec type 55P11 wire diameter 5 mm with 55H20 support)
placed 0.010m upstream of the turbine meter (see Fig. 3). Accurate measurements of the amplitude of the
velocity pulsations by means of these hot wires are only possible if the ratio between the acoustic velocity
amplitude and the main flow velocity is small enough to avoid flow reversal, uac=u0o1. The hot wire makes no
distinction between forward and reversed flow. The signals of the hot wire anemometers are processed with a
constant-temperature anemometer module (Streamline 90n10) in combination with dedicated Dantec
application software. The anemometer can follow velocity fluctuations up to 50 kHz. The signals are
recorded on a PC in the same way as the signals of the pressure transducers. The hot wire anemometers are
calibrated against a Betz water micromanometer ð�1PaÞ in a separate free-jet set up in the velocity range
2240m s�1. The output is fitted using a power-law description. This results in accuracies of about 1% for
velocities above 8m s�1 and of about 5% for velocities from 2 to 8m s�1.

The time-averaged volume flow can be measured using the turbine flow meter (Instromet type SM-RI-X
G250), using the calibration data provided by Elster-Instromet for normal flow conditions. In the absence of
pulsations the volume flow measured has an accuracy of 0.2% in the range 6� 10�3–1� 10�1 m3 s�1. The
rotation of the rotor of the turbine meter is detected by means of a so-called ‘‘reprox probe’’, a magnetic
pickup generating an inductive pulse when a rotor blade passes the probe. These pulses are converted to
electronic pulses and then modified into proper TTL pulses by means of the signal generator. The time interval
between the TTL pulses is registered using a counter board (PCI 6250 NI), inserted in a PC, with an accuracy
of 50 ns. These intervals are converted to the rotation period of the rotor by multiplying by the number of
rotor blades ðn ¼ 16Þ. Due to small differences in blade geometry the measured rotor speed is not constant
during a rotation. An average rotor speed is calculated for each rotation.
4. Determination of the amplitude of the velocity pulsations at the location of the rotor

When the loudspeaker or the siren is turned on, velocity pulsations are generated. The velocity in the set-up
can be described by the average main flow, ūin, and a periodic fluctuating part, u0in. To investigate the effect of
the acoustic perturbations on the flow measurements of the turbine meter, it is necessary to determine the
velocity pulsations at the position of the rotor. It is impossible to measure the velocity pulsations exactly at the
rotor. The measured data has to be extrapolated to the rotor position. By using the measured pressure
fluctuations obtained by the microphones, the acoustic velocity at the rotor is determined by using an acoustic
model.
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4.1. Acoustic model

For the acoustic model the test pipe including the turbine meter is divided into three parts with different
cross-sectional areas (see Fig. 4). The first part is the pipe leading to the turbine meter with a diameter
D ¼ 0:10m. The pipe has a cross-sectional area of 8:4� 10�3 m2. As can be seen in Fig. 3 the core of the
turbine meter has a complicated shape around the rotor. In the acoustical model, the turbine meter will be
described as two cylindrical parts changing abruptly in cross-sectional areas.

The first part of the turbine meter is the front part of the flow straightener and has a length of 0.037m and a
cross-sectional area of 7:3� 10�3 m2. The second part is the main part of the turbine meter and has a smaller
cross-sectional area of 3:8� 10�3 m2. It is assumed that the acoustic field can be described within each segment
as plane waves for frequencies up to the critical frequency of the pipe, f c ¼ c0=ð2DÞ 	 1:7 kHz. Harmonic
plane waves are escribed by the d’Alembert solution of the one-dimensional equation:

p0jðx; tÞ ¼ p̂jðxÞe
i2pft ¼ pþj e

ið2pft�kþ
j

xÞ
þ p�j e

ið2pftþk�
j

xÞ
; j ¼ 1; 2; 3, (15)

with p̂j the complex amplitude and f ¼ 1=T the radial frequency. In this case of an uniform main flow, kþj and
k�j are the complex wavenumbers of the waves travelling in positive and negative direction, respectively. The
wavenumbers are defined by

kþj ¼
2pf =c0

1þM
þ ð1� iÞad ; k�j ¼

2pf =c0

1�M
þ ð1� iÞad . (16)

The imaginary part of the wavenumber is associated with the damping caused by viscous-thermal effects. In a
quiescent flow in smooth cylindrical pipes, damping of plane waves by viscous-thermal damping can be
described by a damping coefficient [10–12]

ad ¼
1

rjc0

ffiffiffiffiffiffiffiffi
npf

p
1þ

g� 1ffiffiffiffiffiffi
Pr
p

� �
, (17)

where rj is the radius of pipe segment j, n is the kinematic viscosity, g is the Poisson’s ratio and Pr is the Prandtl
number. For air at room temperature and atmospheric pressure the following values are used:
n ¼ 1:5� 10�5 m2 s�1, g ¼ 1:4 and Pr ¼ 0:72. Although this damping coefficient is deduced for quiescent
flow, it provides a good approximation of the effect of damping when the acoustical viscous boundary layer,
d ¼

ffiffiffiffiffiffiffiffiffiffi
n=pf

p
, is thinner than the viscous sublayer 10dþ with dþ ¼ n

ffiffiffiffiffiffiffiffiffiffi
r=tw

p
([13–15]). If we use the dþ for smooth

cylindrical pipes, we find that this is valid for our experiments for f ^100Hz. At lower frequencies damping
has only a minor effect on the wave propagation in the test pipe, and hence the approximation is also
reasonable.

At the abrupt transitions in cross-section the integral formulation of the conservation of mass flow, m0, and
total enthalpy, B0 are used for compressible potential flow [16];

m01 ¼ m02,

B01 ¼ B02,
Fig. 4. A schematic illustration of the acoustic model used to determine the amplitude of the velocity pulsations at the position of the

rotor.
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m0j ¼
Aj

c0
ðpþj e

�ikþ
j

x
ð1þMjÞ � p�j e

ik�
j

x
ð1�MjÞÞ, (18)

B0j ¼
1

r0
ðpþj e

�ikþ
j

x
ð1þMjÞ þ p�j e

ik�
j

x
ð1�MjÞÞ. (19)

By introducing a matrix M and a vector ½pm� with the pressures measured at the microphones, the solution of
the system of the Eqs. (19) and (16) at the positions of the microphones can be computed. The system of
equations becomes

pþj

p�j

" #
¼ ðMTMÞ�1MT � ½pm�. (20)

From this system of equations the least-square solution of the plane wave amplitudes pþj and p�j is determined.
Using

uac ¼
pþ3 e
�ikþ

3
xr � p�3 e

ik�
3

xr

r0c0
, (21)

the velocity pulsations at the position of the rotor, xr, is calculated.

4.2. Synchronous detection

To analyse the measured pressure signals synchronous detection, ‘lock-in’, is being used during post-
processing. When the measurements are carried out by using a loudspeaker to induce pulsations, the signal
driving the loudspeaker is used as reference. When the siren is used to induce pulsations, one of the pressure
transducers is filtered out digitally using a second-order band-pass filter to produce a sinusoidal reference
signal. From the sine wave reference signal a cosine wave signal is obtained by shifting the phase by p=2. The
Hilbert transform routine of Matlab is used to obtain the shifted reference signal. The transducer signals are
multiplied by the sine reference signal and integrated over a integer number of oscillation periods to extract the
amplitude of the sinð2pftÞ component of the signal. The same procedure is repeated for the cosine reference
signal to obtain the amplitude of the cosð2pftÞ component of the signal. Integration is done typically over a few
hundred periods.

4.3. Verification of the acoustic model

To investigate the accuracy of the procedure for the determination of the acoustic velocity several
approaches are used. The pressure transducers placed in the turbine meter are placed close to the rotor. The
rotation of the rotor, the wake of the guiding vanes of the flow straightener and the abrupt transitions in cross-
section can cause interference on these pressure measurements. This can be investigated by excluding the two
microphones placed within the turbine meter. In Fig. 5 an example is given of an experiment in which
pulsations were induced at 164Hz. The figure shows the pressure amplitude, the added upstream and
downstream travelling pressure waves. It can be found that the difference between these two models is small,
in the order of a few percent in velocity amplitude, depending on frequency and standing wave pattern. This
also indicates that acoustical dissipation due to the flow straightener just upstream of the flow meter can be
neglected in our acoustical analysis.

The accuracy of the acoustic model depends on the position of the pressure nodes of the standing wave. If
the pressure node is located around the rotor position, small deviations in the pressure wave induce small
deviations in the velocity amplitude, because the acoustic velocity is rather uniform around a pressure node.
When the rotor is close to a pressure antinode large errors in velocity amplitude can be induced by small
deviations. Measurements are only considered when the acoustical velocity can be determined accurately. In
Fig. 6 an example is given of a measurement at 362Hz, for which the position of the rotor is close to a pressure
anti-node. The results of this experiment were therefore not used in our analysis.
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Fig. 5. The pressure amplitude of the standing wave in the set-up during a measurement at a frequency of f ¼ 164Hz with a mainstream

velocity in the pipe of u0 ¼ 2m s�1. The dots represent the measured pressure amplitude of the pressure transducers. (a) Shows a example

of a measurement were all eight pressure transducers in the set up are used, (b) shows the standing wave predicted when the two pressure

transducers in the turbine meter are not used. The different lines indicate the three different parts of the acoustic model (Fig. 4).

Fig. 6. The pressure amplitude of the standing wave in the set up for a measurement at a frequency of f ¼ 362Hz with a mainstream

velocity in the pipe of u0 ¼ 2m s�1. The dots represent the measured pressure amplitude of the pressure transducers. (a) Shows a example

of a measurement where the rotor is located close to a pressure antinode, (b) shows a measurement at the same frequency and main stream

velocity with the rotor not as close to the pressure maximum. The different lines indicate the three different parts of the acoustic model

(Fig. 4).
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To illustrate this, the velocity amplitude was calculated at the front of the rotor and at the back of the rotor
(the rotor has a width of 2 cm). In the case shown in Fig. 6(a), where the rotor position is around a pressure
antinode, the velocity amplitude changes over the width of the rotor by 28%, while in the Fig. 6(b) the velocity
amplitude changes by 10%. Besides the location of the rotor position in respect to the standing wave, the
frequency also plays an important roll. In Fig. 7 examples of a measurement at 24Hz and a measurement at
730Hz are shown. If we evaluate the accuracy as mentioned above, for 24Hz the velocity amplitude changes
over the rotor with less than 0.1%, while at 730Hz this is about 3%. In this example (730Hz) this change in
velocity amplitude is still relatively small, because the rotor is positioned at a pressure node.
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Fig. 7. The pressure amplitude of the standing wave in the set-up. The dots represent the measured pressure amplitude of the pressure

transducers. (a) Shows a example of a measurement at 24 rmHz, (b) Shows a measurement at 730Hz. Both measurements are carried out at

a mainstream velocity u0 ¼ 2m s�1. The different lines indicate the three different parts of the acoustic model (Fig. 4).

P.W. Stoltenkamp et al. / Journal of Sound and Vibration 315 (2008) 258–278 267
To verify the velocity amplitude found with the acoustical model further, the velocity amplitude is measured
1 cm upstream of rotor by means of two hot wires placed at different positions. Two hot wires were used to
account for the complicated flow profile behind the blades of the flow straightener. The local relative velocity
pulsations for ju0j=u0o1, can be compared with the relative velocity amplitude calculated with the acoustical
model based on the pressure measurements. The measurements of the velocity amplitude with the hot wires
are (within 10%) in agreement with the acoustical model for velocities higher than 2m s�1. Below 2m s�1 the
calibration of the hot wire is problematic. We will discuss the hot wire measurements below.

The siren generates block pulses in volume flow, which drives many harmonics of the fundamental
frequency. By using the siren at resonance frequencies of the pipe, the resonant frequency dominates over
other frequencies. In that case we obtain an almost harmonic perturbation. Some overtones will, however, still
be present. Using Eq. (9) it is expected that the contributions of the different harmonics add quadratically to
the error:

Epuls ¼
1

2

ju01j

uin

� �2

þ
ju02j

uin

� �2

þ
ju03j

uin

� �2

þ � � �

" #
, (22)

where the subscripts indicate the different harmonics. This is checked by inducing pulsations using the
loudspeaker and the siren simultaneously at different frequencies. As is shown in Table 2 the measurement
error, Eadd, caused by the frequencies separately accumulates, to the measurement error caused by the two
frequencies simultaneously, Esim, within measurement accuracy. When the difference in frequency is small the
induced acoustical velocity will display low-frequency beats which the siren can follow. This produces the type
of signal shown in Fig. 8. As the frequency obtained by using the siren displays some drift in time, we observe
some time dependence in the frequency of the beats for simultaneous measurements with two frequencies close
together. As shown in Fig. 8 at t ¼ 20 s the loudspeaker is turned on and the turbine meter starts to measure a
higher velocity. After another 20 s the siren is turned on, the measurement error becomes larger and starts
oscillating. This is by the beats. Taking the time average of the error during the beats we still find that
EaddIEsim (Table 2).

For signals in which other frequencies are present, the contribution from each frequency can be added to
predict the total error. As the error depends quadratically on the amplitude the harmonic with highest
amplitude will dominate. In all the experimental results presented further the effect of frequencies other than
the imposed fundamental frequency was less than 1% of the error signal Epuls.
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Table 2

Measurements with pulsations at two frequencies

ju0j=u0 ju0j=u0 Eadd Esim Esim � Eadd

Esim
� 100%

f ¼ 24Hz f ¼ 164Hz

0.21 0.19 0.032 0.033 0.12%

0.21 0.33 0.074 0.074 �0.18%

0.21 0.57 0.227 0.228 0.64%

f ¼ 164Hz f ¼ 367Hz

0.09 0.07 0.005 0.005 �3.06%

0.09 0.12 0.011 0.010 �2.73%

0.09 0.16 0.015 0.016 1.04%

f ¼ 164Hz f ¼ 166Hz

0.26 0.18 0.036 0.040 6.17%

0.26 0.25 0.049 0.048 �1.07%

f ¼ 164Hz f 	 164Hz

0.18 0.28 0.042 0.041 �2.32%

0.18 0.33 0.052 0.056 7.03%

Eadd is the added measurement error of these frequencies separately and Esim is the measurement error for measurement for both

pulsations simultaneously. All measurements are carried out at a mainstream velocity of u0 ¼ 2m s�1.
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4.4. Measurements of velocity pulsation in the field

Determining the amplitude of the velocity pulsations using eight pressure transducers is not practical for
industrial use of turbine flow meters. For this reason the options to measure the velocity amplitude by means
of a hot wire or two pressure transducers embedded in the turbine meter has been investigated.

A hot wire determines the local velocity as well as velocity fluctuations, in the set-up where two hot wires are
placed. Both hot wires are placed 1 cm upstream of the rotor and 1 cm from the pipe wall in the flow. One hot
wire was placed in the wake of a vane of the flow straighteners and the other was placed in between two vanes
(see Fig. 3). This was done to account for the effects of the complicated flow profile around the flow
straightener. The mainstream velocity measured locally with the hot wires are higher than the mean velocity
measured by the turbine meter. This is caused by hot wire measurements being local measurement, and as the
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flow profile in the annulus is not uniform. The local flow velocity can be higher or lower than the mean
velocity depending on the position of the hot wire. As expected the average velocity in the wake of the vane is
lower than the velocity measured between the vanes of the flow straightener. The measured amplitude of the
velocity pulsations for high velocities is within 10% of the amplitude of the velocity pulsations determined
with the acoustical model, for low velocities, however, they are much less accurate. The velocity amplitude
measured with the hot wire placed in the wake measures systematically a higher velocity amplitude than the
other hot wire. This can probably be explained by the contribution of acoustically induced vortices shedding at
the vane.

The velocity amplitude can also be calculated using the acoustical model described in Section 4.1 using just
the two pressure transducers in the turbine meter. These calculations show that the velocity amplitude is
predicted within 40%. This is not accurate enough for our tests, but can be used as an indication in
practical situations.
5. Determination of the measurement error of the turbine meter

During a measurement the rotation speed of the rotor is recorded, without flow perturbations and with flow
perturbations generated by the loudspeaker or the siren. The effect on the rotation speed, averaged over one
revolution, is determined from a visual examination of the plots of the signals as shown in Fig. 9. In Fig. 9 the
black oscillating line corresponds to the instantaneous reading of the flow meter. The smooth white line
represents the measured velocity averaged over one rotation. The left figures show typical measurements for
perturbations generated by the siren. The siren is turned on the first 30 s and then turned off. The right figures
show typical results of measurements for the case in which perturbations are generated with the loudspeaker,
starting with the speaker turned off, then turned on, subsequently turned off. Using a ruler deviations in the
signal of 0.1% can be determined.

Epuls ¼
o� o0

o0
, (23)

where o is the angular velocity of the rotor while measuring pulsating flow and o0 is the angular velocity of
the rotor for flow without pulsations. The variations of the pressure in the reservoir induces slow mass flow
variations during a measurement (around 10�3 Hz). This is the main cause of inaccuracies in determining the
measurement error of the flow meter.

The siren needs some time to reach a constant pulsation frequency, therefore these measurements are started
with the siren already turned on. After the siren is turned off, this effect can also be seen. The slowing
down of the siren causes the frequency to decay, possibly inducing pulsations that can momentarily cause a
large oscillations in the measuring error during the transition. The influence of the pulsations is more
accurately determined by using the loudspeaker. The loudspeaker is turned on and off during the
measurement without complex transitional behaviour, making it easier to measure the effect of the pulsations.
However, the loudspeaker could only be used at low flow velocities, up to 5m s�1 in the main test pipe.
Measurements carried out with the siren do match the corresponding measurements carried out with the
loudspeaker.
6. Measurements

To investigate the effect of velocity pulsation on the flow measurements of the turbine meter, measurements
were carried out at resonance frequencies of the set-up between 24 and 730Hz and amplitudes of velocity
pulsations ranging from small, uac=u0 	 0:01, to very high amplitudes, uac=u0 	 2. The turbine flow meter used
in the set-up (Instromet type SM-RI-X G250) has a flow range from 20 to 400m3 h�1 ð5:6� 10�320:11m3 s�1Þ,
this corresponds to a velocity in the pipe of u0 ¼ 0:7m s�1213:3m s�1. In our measurements velocities were
varied from u0 ¼ 0:5 up to 15m s�1. In Figs. 10 and 11 measurements are shown for a pulsation frequency
of f ¼ 164Hz for different mainstream velocities. Both figures show exactly the same data set, however, in
Fig. 10 the data are shown on a double logarithmic scale and in Fig. 11 the data are shown on a linear scale.
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From these figures it is clear that for a large range of relative velocity amplitude extending over two decades
and the range of main stream velocities, the measurements are still in fair agreement with the quasi-steady
theory. We observe less than 40% deviation from the theory. By looking at the data, we can see that the
deviation from the quasi-steady theory increases for decreasing main flow velocities. The effect of the Strouhal
number and the Reynolds number will be discussed systematically in the next sections.
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6.1. Dependence on Strouhal number

In order to verify the range of validity of the quasi-steady theory, measurements have been carried out for a
wide range of Strouhal numbers

Sr ¼
fLblade

u0
, (24)

where f ¼ 1=T is the frequency of the pulsations, Lblade is the length of a rotor blade at the tip and u0

is the main flow velocity at the position of the rotor. It is expected that for low Strouhal numbers the
quasi-steady theory is valid. From Fig. 11, it is found that measurements for a given fixed frequency, f,
and a fixed mainstream velocity, u0, have a quadratic dependence on the relative velocity amplitude,
uac=u0. To investigate the dependence of the deviation in measured volume flow and actual flow Epuls,
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a quadratic function

Epuls ¼ a
uac

u0

� �2

, (25)

was therefore fitted through the measured data at a given frequency, f, and flow velocity, u0 using least-square
fitting. The parameter a will be referred to as the ‘‘quadratic fit parameter’’. This parameter is 1

2
for the quasi-

steady theory. An example is shown in Fig. 12 for measurements at main stream velocity u0 ¼ 1m s�1 and at
frequency of pulsation f ¼ 164Hz. We will consider only measurements with a relative amplitude uac=u0o1 to
obtain the quadratic dependence, because higher amplitudes no longer show the quadratic dependence.
Measurements with relative amplitudes uac=u041 are discussed separately.

In Fig. 13 the quadratic fit parameter, a, for the measurement at pulsation frequencies of 24, 69, 117 and
164Hz and mainstream velocities from 1 to 15m s�1 are plotted against Strouhal number. The error bar gives
the 95% confidence level for the quadratic fit through the measured data. It is an indication for the quality of
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the quadratic fit. The solid line in the figure shows the quadratic fit parameter, a ¼ 0:5, for the quasi-steady
theory, the dashed line is a function fitted through the data found from the present measurements. In Fig. 13
the data measured using the siren are solid symbols. The trends in the pulsation error measured with the siren
and loudspeaker do not differ from each other. However around SrLblade

¼ Oð1Þ, the siren data seems to have
a slightly higher quadratic fit parameter than the loudspeaker data. An explanation for this could be that most
of the measurements using the loudspeaker are for smaller relative amplitudes compared to the measurements
using the siren. This indicates that at low amplitudes the pulsation error, E, is probably not exactly
quadratically dependent on the velocity amplitude. The figure shows a clear Strouhal dependence, where the
deviation from the actual flow decreases with increasing Strouhal number. However, the deviation from
the actual volume flow stays within 40% of the quasi-steady theory for Strouhal number, SrLblade

, up to 2.5.
Using regression, an equation is obtained to predict the dependence of Epuls ¼ aðuac=u0Þ

2 on the Strouhal
number, SrLblade

:

a ¼ �0:3672Sr
1
5
Lblade

þ 0:7407 for 0:05pSrLblade
p2:5. (26)

This is a purely empirical relationship between the deviation and the Strouhal number, which cannot be
explained theoretically. It is interesting to note that for SrLblade

o0:2 we find a41
2
. We cannot explain this.

In Fig. 14 the data measured at the higher frequencies (f ¼ 360 and 730Hz) are shown separately, because
they display different behaviour compared to the low-frequency data. The measurements at a pulsation
frequency of 360Hz all have a quadratic fit parameter, a, around 0.5. These measurements are closer to the
deviation, Epuls, found by the quasi-steady theory than the equation found for the lower frequencies. The
measurements at a pulsation frequency of 730Hz show the same quadratic fit parameter for Strouhal numbers
of around 6. However, at a Strouhal number of about 10 the data seems to support the empirical relation
found using the lower pulsation frequencies. It is possible that these frequencies correspond to mechanical
resonant frequencies of the turbine meter causing a different behaviour of the rotor.

Besides this, as explained in Section 4.3 for high frequencies small errors in the pressure can cause large
errors in estimated acoustical velocity. This could explain some of the differences in Strouhal number
dependence. Another possibility is that acoustical resonance hinder the measurements at these frequencies.
When the length of the constriction caused by the core of the meter matches about half the wave length of the
acoustical waves, there will be a resonance in this pipe segment. The length of this constriction is about 25 cm,
i.e. this would give resonance frequencies of 680Hz. For this resonance the rotor is close to a pressure
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antinode which corresponds to conditions in which the acoustical velocity at the turbine is difficult to
determine.

To exclude the possibility that the hollow space inside the flow straightener could act as a Helmholtz
resonator, this area was filled with foam. This did not change the observed response of the flow meter to
pulsations.

Care was taken to prevent these problems occurring at high frequencies by excluding measurements for
which the rotor was close to a pressure antinode.1 To be able to draw more conclusions for the deviation,
Epuls, at Strouhal numbers greater than 2.5, additional measurements are necessary.

At high frequencies, 367 and 730 Hz, other strange phenomena can be found; at low pulsation levels,
ju0j=u0p0:1. A negative measurement error can be observed for low velocities, up to 2m s�1 (see Fig. 15, in this
plot the velocity of the flow measured by the turbine meter is given, the smooth white line represents the
velocity averaged over one revolution of the turbine meter). These errors do not always reproduce. We suspect
here a combination of mechanical vibration and friction. During our tests dust particles were present in the
flow and this affected the friction in the rotor. However, tests after cleaning the rotor indicated that this had
only a minor effect on most of our data. No significant effect is found for u042m s�1.

6.2. Dependence on Reynolds number

To investigate if there is also a dependence of the deviation, Epuls, on the Reynolds number, ReLblade
, the

residual of the Strouhal number dependence predicted by the empirical relation (Eq. (26)) and the quadratic fit
parameter found for the measurements are plotted as a function of Reynolds number, ReLblade

, for pulsation
frequencies of 24, 69, 117 and 164Hz (see Fig. 16).

Fig. 16 shows no significant correlation, between the Reynolds number and the difference between the
measurements and the empirical relation for the Strouhal number dependence. We conclude that there is no
significant dependence of the Reynolds number, ReLblade

, on the deviation, Epuls.

6.3. High relative acoustic amplitudes

Several measurements were carried out at relative pulsation amplitudes larger than unity; uac=u041. Such
high pulsation levels are not likely to occur in practice. However, to investigate the range of the applicability of
1Note that all measurements between 360 and 730Hz have been rejected because of a very large scatter in the quadratic fit coefficient a,

which was related to difficulties in the measurement of the acoustical velocity.
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the quasi-steady theory, it is interesting to look at these results. At these high amplitudes the deviation, Epuls,
can no longer be described by the quadratic dependence found for lower amplitudes. In general the measured
deviation, Epuls, is smaller less than the deviation found by extrapolation of the quadratic dependence found
for uac=u0o1. The difference with this quadratic dependence is still small for relative acoustic amplitudes
uac=u0 	 1 and increases for increasing amplitude. Typical measurement data are shown in Fig. 17. At
pulsation levels uac=u0o1, the quasi-steady theory overestimates the effect of pulsations by about a factor 1.4.
At pulsation levels uac=u0I2:5 the effect of pulsations is overestimated by a factor 2. At such high amplitudes,
flow reversal will certainly occur.

6.4. Influence of the shape of the rotor blades

The influence of the shape of the blade was investigated by replacing the standard rotor with rotor with a
different blade shape. The original rotor has blades with a rounded upstream leading edge and a chamfered
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Fig. 18. A schematic drawing of the rotor (a) with rounded leading edges and (b) with a chamfered leading edges used in the

measurements.
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trailing edge. This rotor was replaced by a rotor with chamfered leading edges similar to the trailing edges
(Fig. 18). We refer to this ‘new’ rotor as the symmetric rotor.

To determine the behaviour of the rotor with chamfered leading edges in pulsating flow some of the
measurements carried out with the standard rotor are repeated using the new rotor. Fig. 19 shows the results
of the measurements carried out at a pulsation frequency of 164Hz and mainstream velocities of u0 ¼ 1, 5 and
15m s�1, compared to the measurement data obtained for the standard rotor. In Fig. 19 the solid symbols are
the data measured with the rotor with chamfered-leading-edge blades. Within the accuracy of the
measurement no difference was found. To verify this further a quadratic fit as explained in Section 6.1 was
made and this parameter was plotted against Strouhal number, SrLblade

for low frequencies (f ¼ 24, 69, 117
and 164Hz) (Fig. 20). Again, we see that within the accuracy level of the measurements there is no difference
between the deviation of the volume flow measurement for the rotor with blades with rounded leading edges
and the rotor with blades with chamfered leading edges.

7. Conclusions

The effect of the pulsating flow on a turbine flow meter has been investigated experimentally and results
have been compared to the results of a simplified quasi-steady model. A set-up was built making it is possible
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to induce pulsations with a frequency from 24 to 730Hz, relative acoustic velocity amplitudes, uac=u0, from
2� 10�2 up to 2 and volume flows ranging from the minimum to the maximum flow specified by the
manufacturer, i.e. from 20 to 400m3 h�1. Multi-microphone measurements have been used to determine the
amplitude of the velocity pulsation at the rotor. The error caused by the pulsations is obtained from the
comparison of the rotation speed of the rotor in presence of pulsations with the one in the case where there are
no pulsations. The measurements show that the simplified quasi-steady theory gives a fair approximation of
the error caused by the pulsations. The measurements agree with the theory within 40% for nearly all
measurements, even for measurements at high relative acoustical amplitudes. Even when flow reversal occurs
uac=u0I2:5 the quasi-steady theory still provides a rough estimate of the error. We found that the error caused
by pulsations is dependent on Strouhal number. For SrLblade

o2:5 an empirical relation was found for the
dependence of the error on the Strouhal number. Intuitively one expects that the influence of pulsations should
decrease with increasing pulsation Strouhal number. This corresponds to our observations. As yet no physical
explanation is found for this specific dependence. For SrLblade

42:5 the behaviour of the rotor is still unclear,
caused by the difficulties in measuring at higher pulsations frequencies. We still observe a significant pulsation
error up to SrLblade

¼ 10 at which we intuitively would expect that such effect would average out. The
measurement error caused by the pulsations is not significantly dependent on the Reynolds number. The shape
of the upstream edge of the rotor blades does not influence the Strouhal number dependence of the systematic
error induced by the pulsations. The theory predicts very well the effect of simultaneous acoustical
perturbations with different frequencies.

This study stresses the importance of determining the acoustical velocity at the rotor for a correction of
measurement errors due to pulsations. Measurements with local velocity probes such as hot wires are difficult
to use because they do not distinguish between local vortical perturbations and global acoustical waves.
Acoustical waves can be detected by means of microphones mounted flush in the wall. This would however
involve multiple microphones at a certain position to allow the detection of the plane waves by cross-
correlation method analogous to microphone array techniques.
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